Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(1): 62-78.e20, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38096822

RESUMO

The microbiota influences intestinal health and physiology, yet the contributions of commensal protists to the gut environment have been largely overlooked. Here, we discover human- and rodent-associated parabasalid protists, revealing substantial diversity and prevalence in nonindustrialized human populations. Genomic and metabolomic analyses of murine parabasalids from the genus Tritrichomonas revealed species-level differences in excretion of the metabolite succinate, which results in distinct small intestinal immune responses. Metabolic differences between Tritrichomonas species also determine their ecological niche within the microbiota. By manipulating dietary fibers and developing in vitro protist culture, we show that different Tritrichomonas species prefer dietary polysaccharides or mucus glycans. These polysaccharide preferences drive trans-kingdom competition with specific commensal bacteria, which affects intestinal immunity in a diet-dependent manner. Our findings reveal unappreciated diversity in commensal parabasalids, elucidate differences in commensal protist metabolism, and suggest how dietary interventions could regulate their impact on gut health.


Assuntos
Microbioma Gastrointestinal , Parabasalídeos , Polissacarídeos , Animais , Humanos , Camundongos , Fibras na Dieta , Intestino Delgado/metabolismo , Polissacarídeos/metabolismo , Parabasalídeos/metabolismo , Carboidratos da Dieta/metabolismo , Biodiversidade
2.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36945655

RESUMO

Bacterial populations that originate from a single bacterium are not strictly clonal. Often, they contain subgroups with distinct phenotypes. Bacteria can generate heterogeneity through phase variation: a preprogrammed, reversible mechanism that alters gene expression levels across a population. One well studied type of phase variation involves enzyme-mediated inversion of specific intergenic regions of genomic DNA. Frequently, these DNA inversions flip the orientation of promoters, turning ON or OFF adjacent coding regions within otherwise isogenic populations. Through this mechanism, inversion can affect fitness, survival, or group dynamics. Here, we develop and apply bioinformatic approaches to discover thousands of previously undescribed phase-variable regions in prokaryotes using long-read datasets. We identify 'intragenic invertons', a surprising new class of invertible elements found entirely within genes, in bacteria and archaea. To date, inversions within single genes have not been described. Intragenic invertons allow a gene to encode two or more versions of a protein by flipping a DNA sequence within the coding region, thereby increasing coding capacity without increasing genome size. We experimentally characterize specific intragenic invertons in the gut commensal Bacteroides thetaiotaomicron, presenting a 'roadmap' for investigating this new gene-diversifying phenomenon.

3.
Biophys Physicobiol ; 20(Supplemental): e201023, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38362324

RESUMO

Microbial rhodopsins are photoreceptive transmembrane proteins that transport ions or regulate other intracellular biological processes. Recent genomic and metagenomic analyses found many microbial rhodopsins with unique sequences distinct from known ones. Functional characterization of these new types of microbial rhodopsins is expected to expand our understanding of their physiological roles. Here, we found microbial rhodopsins having a DSE motif in the third transmembrane helix from members of the Actinobacteria. Although the expressed proteins exhibited blue-green light absorption, either no or extremely small outward H+ pump activity was observed. The turnover rate of the photocycle reaction of the purified proteins was extremely slow compared to typical H+ pumps, suggesting these rhodopsins would work as photosensors or H+ pumps whose activities are enhanced by an unknown regulatory system in the hosts. The discovery of this rhodopsin group with the unique motif and functionality expands our understanding of the biological role of microbial rhodopsins.

4.
Curr Opin Microbiol ; 69: 102192, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030622

RESUMO

Structural variation in bacterial genomes is an important evolutionary driver. Genomic rearrangements, such as inversions, duplications, and insertions, can regulate gene expression and promote niche adaptation. Importantly, many of these variations are reversible and preprogrammed to generate heterogeneity. While many tools have been developed to detect structural variation in eukaryotic genomes, variation in bacterial genomes and metagenomes remains understudied. However, recent advances in genome sequencing technology and the development of new bioinformatic pipelines hold promise in further understanding microbial genomics.


Assuntos
Genoma Bacteriano , Genômica , Evolução Biológica , Biologia Computacional , Rearranjo Gênico
6.
mBio ; 12(4): e0052121, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253055

RESUMO

Candidate Phyla Radiation (CPR) bacteria are small, likely episymbiotic organisms found across Earth's ecosystems. Despite their prevalence, the distribution of CPR lineages across habitats and the genomic signatures of transitions among these habitats remain unclear. Here, we expand the genome inventory for Absconditabacteria (SR1), Gracilibacteria, and Saccharibacteria (TM7), CPR bacteria known to occur in both animal-associated and environmental microbiomes, and investigate variation in gene content with habitat of origin. By overlaying phylogeny with habitat information, we show that bacteria from these three lineages have undergone multiple transitions from environmental habitats into animal microbiomes. Based on co-occurrence analyses of hundreds of metagenomes, we extend the prior suggestion that certain Saccharibacteria have broad bacterial host ranges and constrain possible host relationships for Absconditabacteria and Gracilibacteria. Full-proteome analyses show that animal-associated Saccharibacteria have smaller gene repertoires than their environmental counterparts and are enriched in numerous protein families, including those likely functioning in amino acid metabolism, phage defense, and detoxification of peroxide. In contrast, some freshwater Saccharibacteria encode a putative rhodopsin. For protein families exhibiting the clearest patterns of differential habitat distribution, we compared protein and species phylogenies to estimate the incidence of lateral gene transfer and genomic loss occurring over the species tree. These analyses suggest that habitat transitions were likely not accompanied by large transfer or loss events but rather were associated with continuous proteome remodeling. Thus, we speculate that CPR habitat transitions were driven largely by availability of suitable host taxa and were reinforced by acquisition and loss of some capacities. IMPORTANCE Studying the genetic differences between related microorganisms from different environment types can indicate factors associated with their movement among habitats. This is particularly interesting for bacteria from the Candidate Phyla Radiation because their minimal metabolic capabilities require associations with microbial hosts. We found that shifts of Absconditabacteria, Gracilibacteria, and Saccharibacteria between environmental ecosystems and mammalian mouths/guts probably did not involve major episodes of gene gain and loss; rather, gradual genomic change likely followed habitat migration. The results inform our understanding of how little-known microorganisms establish in the human microbiota where they may ultimately impact health.


Assuntos
Bactérias/classificação , Bactérias/genética , Evolução Molecular , Metagenoma , Animais , Ecossistema , Genoma Bacteriano , Genômica , Filogenia , RNA Ribossômico 16S/genética
7.
Microbiome ; 9(1): 142, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154658

RESUMO

BACKGROUND: Candida parapsilosis is a common cause of invasive candidiasis, especially in newborn infants, and infections have been increasing over the past two decades. C. parapsilosis has been primarily studied in pure culture, leaving gaps in understanding of its function in a microbiome context. RESULTS: Here, we compare five unique C. parapsilosis genomes assembled from premature infant fecal samples, three of which are newly reconstructed, and analyze their genome structure, population diversity, and in situ activity relative to reference strains in pure culture. All five genomes contain hotspots of single nucleotide variants, some of which are shared by strains from multiple hospitals. A subset of environmental and hospital-derived genomes share variants within these hotspots suggesting derivation of that region from a common ancestor. Four of the newly reconstructed C. parapsilosis genomes have 4 to 16 copies of the gene RTA3, which encodes a lipid translocase and is implicated in antifungal resistance, potentially indicating adaptation to hospital antifungal use. Time course metatranscriptomics and metaproteomics on fecal samples from a premature infant with a C. parapsilosis blood infection revealed highly variable in situ expression patterns that are distinct from those of similar strains in pure cultures. For example, biofilm formation genes were relatively less expressed in situ, whereas genes linked to oxygen utilization were more highly expressed, indicative of growth in a relatively aerobic environment. In gut microbiome samples, C. parapsilosis co-existed with Enterococcus faecalis that shifted in relative abundance over time, accompanied by changes in bacterial and fungal gene expression and proteome composition. CONCLUSIONS: The results reveal potentially medically relevant differences in Candida function in gut vs. laboratory environments, and constrain evolutionary processes that could contribute to hospital strain persistence and transfer into premature infant microbiomes. Video abstract.


Assuntos
Candidíase , Microbiota , Candida parapsilosis/genética , Humanos , Lactente , Recém-Nascido , Testes de Sensibilidade Microbiana , Proteômica , Transcriptoma
8.
Microbiome ; 7(1): 26, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770768

RESUMO

BACKGROUND: Fungal infections are a significant cause of mortality and morbidity in hospitalized preterm infants, yet little is known about eukaryotic colonization of infants and of the neonatal intensive care unit as a possible source of colonizing strains. This is partly because microbiome studies often utilize bacterial 16S rRNA marker gene sequencing, a technique that is blind to eukaryotic organisms. Knowledge gaps exist regarding the phylogeny and microdiversity of eukaryotes that colonize hospitalized infants, as well as potential reservoirs of eukaryotes in the hospital room built environment. RESULTS: Genome-resolved analysis of 1174 time-series fecal metagenomes from 161 premature infants revealed fungal colonization of 10 infants. Relative abundance levels reached as high as 97% and were significantly higher in the first weeks of life (p = 0.004). When fungal colonization occurred, multiple species were present more often than expected by random chance (p = 0.008). Twenty-four metagenomic samples were analyzed from hospital rooms of six different infants. Compared to floor and surface samples, hospital sinks hosted diverse and highly variable communities containing genomically novel species, including from Diptera (fly) and Rhabditida (worm) for which genomes were assembled. With the exception of Diptera and two other organisms, zygosity of the newly assembled diploid eukaryote genomes was low. Interestingly, Malassezia and Candida species were present in both room and infant gut samples. CONCLUSIONS: Increased levels of fungal co-colonization may reflect synergistic interactions or differences in infant susceptibility to fungal colonization. Discovery of eukaryotic organisms that have not been sequenced previously highlights the benefit of genome-resolved analyses, and low zygosity of assembled genomes could reflect inbreeding or strong selection imposed by room conditions.


Assuntos
Fezes/microbiologia , Fungos/classificação , Metagenômica/métodos , Microbiologia Ambiental , Fungos/genética , Fungos/isolamento & purificação , Hospitalização , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Filogenia
9.
Genome Res ; 28(4): 569-580, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29496730

RESUMO

Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities.


Assuntos
Eucariotos/genética , Genoma/genética , Metagenoma/genética , Metagenômica , Archaea/genética , Bactérias/genética , DNA Bacteriano/genética , Ecossistema , Fungos/genética , Filogenia , RNA Ribossômico 16S/genética
11.
Plant Physiol ; 168(4): 1262-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25869653

RESUMO

DNA methylation is a stable modification of chromatin that can contribute to epigenetic variation through the regulation of genes or transposons. Profiling of DNA methylation in five maize (Zea mays) inbred lines found that while DNA methylation levels for more than 99% of the analyzed genomic regions are similar, there are still 5,000 to 20,000 context-specific differentially methylated regions (DMRs) between any two genotypes. The analysis of identical-by-state genomic regions that have limited genetic variation provided evidence that DMRs can occur without local sequence variation, but they are less common than in regions with genetic variation. Characterization of the sequence specificity of DMRs, location of DMRs relative to genes and transposons, and patterns of DNA methylation in regions flanking DMRs reveals a distinct subset of DMRs. Transcriptome profiling of the same tissue revealed that only approximately 20% of genes with qualitative (on-off) differences in gene expression are associated with DMRs, and there is little evidence for association of DMRs with genes that show quantitative differences in gene expression. We also identify a set of genes that may represent cryptic information that is silenced by DNA methylation in the reference B73 genome. Many of these genes exhibit natural variation in other genotypes, suggesting the potential for selection to act upon existing epigenetic natural variation. This study provides insights into the origin and influences of DMRs in a crop species with a complex genome organization.


Assuntos
Metilação de DNA , Epigênese Genética , Variação Genética , Genoma de Planta/genética , Zea mays/genética , Cruzamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo
12.
PLoS Genet ; 11(1): e1004915, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569788

RESUMO

Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Transcrição Gênica , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Plântula/genética
13.
PLoS One ; 9(8): e105267, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25122127

RESUMO

DNA methylation and dimethylation of lysine 9 of histone H3 (H3K9me2) are two chromatin modifications that can be associated with gene expression or recombination rate. The maize genome provides a complex landscape of interspersed genes and transposons. The genome-wide distribution of DNA methylation and H3K9me2 were investigated in seedling tissue for the maize inbred B73 and compared to patterns of these modifications observed in Arabidopsis thaliana. Most maize transposons are highly enriched for DNA methylation in CG and CHG contexts and for H3K9me2. In contrast to findings in Arabidopsis, maize CHH levels in transposons are generally low but some sub-families of transposons are enriched for CHH methylation and these families exhibit low levels of H3K9me2. The profile of modifications over genes reveals that DNA methylation and H3K9me2 is quite low near the beginning and end of genes. Although elevated CG and CHG methylation are found within gene bodies, CHH and H3K9me2 remain low. Maize has much higher levels of CHG methylation within gene bodies than observed in Arabidopsis and this is partially attributable to the presence of transposons within introns for some maize genes. These transposons are associated with high levels of CHG methylation and H3K9me2 but do not appear to prevent transcriptional elongation. Although the general trend is for a strong depletion of H3K9me2 and CHG near the transcription start site there are some putative genes that have high levels of these chromatin modifications. This study provides a clear view of the relationship between DNA methylation and H3K9me2 in the maize genome and how the distribution of these modifications is shaped by the interplay of genes and transposons.


Assuntos
Metilação de DNA , Genoma de Planta , Histonas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Imunoprecipitação da Cromatina , Análise por Conglomerados , Elementos de DNA Transponíveis , Epigênese Genética , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
14.
Plant Cell ; 25(8): 2783-97, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23922207

RESUMO

DNA methylation is a chromatin modification that is frequently associated with epigenetic regulation in plants and mammals. However, genetic changes such as transposon insertions can also lead to changes in DNA methylation. Genome-wide profiles of DNA methylation for 20 maize (Zea mays) inbred lines were used to discover differentially methylated regions (DMRs). The methylation level for each of these DMRs was also assayed in 31 additional maize or teosinte genotypes, resulting in the discovery of 1966 common DMRs and 1754 rare DMRs. Analysis of recombinant inbred lines provides evidence that the majority of DMRs are heritable. A local association scan found that nearly half of the DMRs with common variation are significantly associated with single nucleotide polymorphisms found within or near the DMR. Many of the DMRs that are significantly associated with local genetic variation are found near transposable elements that may contribute to the variation in DNA methylation. Analysis of gene expression in the same samples used for DNA methylation profiling identified over 300 genes with expression patterns that are significantly associated with DNA methylation variation. Collectively, our results suggest that DNA methylation variation is influenced by genetic and epigenetic changes that are often stably inherited and can influence the expression of nearby genes.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Variação Genética , Zea mays/genética , Análise por Conglomerados , Genótipo , Endogamia , Padrões de Herança/genética , Modelos Genéticos , Recombinação Genética/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...